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| Learners and Complexity

I . . .
- We've seen many versions of underfit/overfit trade-off

— Complexity of the learner
— “Representational Power”

 Different learners have different power
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Example:
¢(x) = sign(f121 + G202 + Gp)

(c) Alexander Ihler
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\Learners and Complexity

+ We've seen many versions of underfit/overfit trade-off
— Complexity of the learner
— “Representational Power”

 Different learners have different power

Feature Values Parameters

(measured) 19

NTH~— Predicted Class
N B _Xz Classifier —— ¢(2)
2 b o . /

. Xn

. v

Example:

é(x) = sign( (¢7 + x3) — fo)
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\Learners and Complexity

+ We've seen many versions of underfit/overfit trade-off
— Complexity of the learner
— “Representational Power”

 Different learners have different power

* Usual trade-oft:
— More power = represent more complex systems, might overfit
— Less power = won'’ t overfit, but may not find “best” learner

- How can we quantify representational power?
— Not easily...
— One solution is VC (Vapnik-Chervonenkis) dimension



|Some notation
|

« Assume training data are iid from some distribution p(x,y)

- Define “risk” and “empirical risk”
— These are just “long term” test and observed training error

R(0) = TestError = E[1[c # é(x; 0)]]
1 . .
emp _ . _ (7) Al e (2) .
R°™P(0) = TrainError - z@: 1c\ # é(x' 5 0)]
- How are these related? Depends on overfitting...

— Underfitting domain: pretty similar...
— Overfitting domain: test error might be lots worse!



\VC Dimension and Risk

* Given some classifier, let H be its VC dimension

— Represents “representational power” of classifier
R(0) = TestError = E[l[c # ¢é(x; 0)]]

1 ) )
R°™P(0) = TrainError = — > 1[c® £ ¢z : 0
(9) rainError - Z (' £ ezt 0)]

 With “high probability” (1-7), Vapnik showed

Hlog(2m/H)+ H —1 4
TestError < TrainError + \/ og(2m/H) + og(n/4)

m



|Shattering
|

- We say a classifier f(x) can shatter points x(_. . xM iff
For all yb...y(™ f(x) can achieve zero error on
training data (x®,yM), (x(@,y@), ... (xM,y)

(I.e., there exists some 0 that gets zero error)

- Can f(x;0) = sign(6,+ 8,x, + B,x2) shatter these points?




\Shattermg

- We say a classifier f(x) can shatter points x(_. . xM iff
For all yb...y(™ f(x) can achieve zero error on
training data (x®,yM), (x(@,y@), ... (xM,y)

(I.e., there exists some 0 that gets zero error)

- Can f(x;0) = sign(6,+ 8,x, + B,x2) shatter these points?
* Yes: there are 4 possible training sets...
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|Shattering
|

- We say a classifier f(x) can shatter points x(_. . xM iff
For all yb...y(™ f(x) can achieve zero error on
training data (x®,yM), (x(@,y@), ... (xM,y)

(I.e., there exists some 0 that gets zero error)

- Can f(x;0) = sign(x,? + X, - 8) shatter these points?




|Shattering
|

- We say a classifier f(x) can shatter points x(_. . xM iff

For all yb...y(™ f(x) can achieve zero error on
training data (x(,y), (x(,y) ... (xy)

(.e., there exists some O that gets zero error)

- Can f(x;0) = sign(x,? + X, - 8) shatter these points?
* Nope!
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|VC Dimension

I- The VC dimension H is defined as

The maximum number of points h that can be arranged so
that f(x) can shatter them

* A game:
— Fix the definition of f(x;0)
— Player 1: choose locations x®)...xM
— Player 2: choose target labels y®...yM

— Player 1: choose value of 6
— If f(x;0) can reproduce the target labels, P1 wins

H{x(l) . .x(h)} s.t. V{y(l) . .y(h)} 30 s.t. Vi f(x(i); 0) = y(i)

(c) Alexander Ihler



|VC Dimension
|

* The VC dimension H is defined as

The maximum number of points h that can be arranged so
that f(x) can shatter them

- Example: what’ s the VC dimension of the (zero-centered)
circle, f(x;0) = sign(x,* + x,% - 0) ?



|VC Dimension
|

* The VC dimension H is defined as

The maximum number of points h that can be arranged so
that f(x) can shatter them

- Example: what’ s the VC dimension of the (zero-centered)
circle, f(x;0) = sign(x,* + x,% - 0) ?

« VCdim =1 : can arrange one point, cannot arrange two
(previous example was general)
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\VC Dimension

- Example: what’ s the VC dimension of the two-dimensional
line, f(x;0) = sign(8,; x; + 6, X, + 6;)?

(c) Alexander Ihler



\VC Dimension

- Example: what’ s the VC dimension of the two-dimensional
line, f(x;0) = sign(8,; x; + 6, X, + 6;)?
@
o/ ©

f~

e VC dim>=3? Yes

(c) Alexander Ihler



\VC Dimension

- Example: what’ s the VC dimension of the two-dimensional
line, f(x;0) = sign(8,; x; + 6, X, + 6;)?

e VC dim>=3? Yes

« VCdim >=47?

(c) Alexander Ihler



\VC Dimension

- Example: what’ s the VC dimension of the two-dimensional
line, f(x;0) = sign(8; x; + 6, X, + 6,)?
@
o/ ©

f~

e VC dim>=3? Yes

« VC dim>=47 No...

Any line through these points
must split one pair (by crossing
one of the lines)




\VC Dimension

- Example: what’ s the VC dimension of the two-dimensional
line, f(x;0) = sign(B; X; + 6, X, + 6,)7?
(<
o/ ©

e VC dim>=3? Yes

L.
Turns out:
« VCdim>=4? No... For a general , linear
classifier (perceptron)
Any line through these points in d dimensions with a

must split one pair (by crossing o constant term:

one of the lines) VC dim = d+1

(c) Alexander Ihler



|VC Dimension
|

VC dimension measures the “power” of the learner
Does *not* necessarily equal the # of parameters!

Number of parameters does not necessarily equal complexity

— Can define a classifier with a lot of parameters but not much power
(how?)

— Can define a classifier with one parameter but lots of power (how?)

Lots of work to determine what the VC dimension of various
learners is...



|Example
|
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|Using VC dimension
|

« Used validation / cross-validation to select complexity

# Params Train Error X-Val Error

fl
f2
f3
f4
5
f6

(c) Alexander Ihler



| Using VC dimension
|

- Used validation / cross-validation to select complexity
« Use VC dimension based bound on test error similarly

 “Structural Risk Minimization” (SRM)

# Params  Train Error VC Term VC Test Bound

fl
f2
f3
f4
5
f6

(c) Alexander Ihler



| Using VC dimension
|

- Used validation / cross-validation to select complexity
« Use VC dimension based bound on test error similarly

» Other Alternatives

— Probabilistic models: likelihood under model (rather than
classification error)

— AIC (Aikike Information Criterion)
* Log-likelihood of training data - # of parameters

— BIC (Bayesian Information Criterion)
* Log-likelihood of training data - (# of parameters)*log(m)

- Similar to VC dimension: performance + penalty

* BIC conservative; SRM very conservative
- Also, “true Bayesian” methods (take prob. learning...)



